Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
J Environ Manage ; 359: 121013, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38723495

RESUMEN

Aquaculture pond sediments have a notable influence on the ecosystem balance and farmed animal health. In this study, microalgal-bacterial immobilization (MBI) was designed to improve aquaculture pond sediments via synergistic interactions. The physicochemical characteristics, bacterial communities, and the removal efficiencies of emerging pollutants were systematically investigated. The consortium containing diatom Navicula seminulum and Alcaligenes faecalis was cultivated and established in the free and immobilized forms for evaluating the treatment performance. The results indicated that the immobilized group exhibited superior performance in controlling nutrient pollutants, shaping and optimizing the bacterial community compositions with the enrichment of functional bacteria. Additionally, it showed a stronger positive correlation between the bacterial community shifts and nutrient pollutants removal compared to free cells. Furthermore, the immobilized system maintained the higher removal performance of emerging pollutants (heavy metals, antibiotics, and pathogenic Vibrios) than free group. These findings confirmed that the employment of immobilized N. seminulum and A. faecalis produced more synergistic benefits and exerted more improvements than free cells in ameliorating aquaculture pond sediments, suggesting the potential for engineering application of functional microalgal-bacterial consortium in aquaculture.

2.
J Mol Model ; 30(4): 115, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557702

RESUMEN

CONTEXT: Based on the first principles, the influence of S-atom doping on the electronic and optical properties of stanene is comprehensively examined in this work. The results show that pure stanene is a quasi-metal with zero bandgap. After doping with an S atom, opening the bandgap of pure stanene becomes possible and the state of the stanene is converted from quasi-metal to semiconductor. Analysis of the density of states reveals that the density of states of all doped systems is primarily made of the p-orbital of the Sn. The overlap population analysis showed that charge transfer occurs between S and Sn atoms under different doping concentrations. The charge transfer increases with increasing doping concentration. The charge transfer reaches a maximum at a doping concentration of 9.38%. The increase in doping concentration causes blue-shifting of the absorption and reflection peaks of the doped system as compared to those of pure stanene. It is expected that these studies can provide theoretical guidance for the practical application of stanene in optoelectronic devices. METHODS: All simulations are undertaken with the Cambridge Sequential Total Energy Package (CASTEP) (Wei et al. Physica B: Condensed Matter 545:99, 2018; Bafekry et al. Phys Chem Chem Phys, 2021; Zala et al. Appl Surf Sci, 2022; Bafekry et al. Nanotechnology, 2021; Bafekry et al. Phys Chem Chem Phys, 2021; Bafekry et al. J Phys: Condens Matter, 2021), which is based on density functional theory (DFT). For the exchange correlation, the generalized gradient approximation (GGA) is implemented with the Perdew-Burke-Ernzerhof (PBE) functional Perdew et al. Phys Rev B Condens Matter 48:4978, 1993. Using the Monkhorst-Pack technique, a specific K-point sample of the Brillouin zone was carried out Monkhorst and Pack Phys Rev B 13:5188, 1976. After the convergence tests, the K-point grid was set to 3 × 3 × 1. The plane-wave truncation energy was set to 400 eV. The residual stress for all atoms was 0.03 eV/Å. The energy convergence criterion was 1.0 × 10-5 eV. To prevent recurring interactions between the layers, a vacuum layer with a thickness of 20 Å was established in the Z-direction.

3.
Mol Plant Pathol ; 25(3): e13442, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38476100

RESUMEN

The type VI secretion system (T6SS) of many gram-negative bacteria injects toxic effectors into adjacent cells to manipulate host cells during pathogenesis or to kill competing bacteria. However, the identification and function of the T6SS effectors remains only partly known. Pantoea ananatis, a gram-negative bacterium, is commonly found in various plants and natural environments, including water and soil. In the current study, genomic analysis of P. ananatis DZ-12 causing brown stalk rot on maize demonstrated that it carries three T6SS gene clusters, namely, T6SS-1, T6SS-2, and T6SS-3. Interestingly, only T6SS-1 secretion systems are involved in pathogenicity and bacterial competition. The study also investigated the T6SS-1 system in detail and identified an unknown T6SS-1-secreted effector TseG by using the upstream T6SS effector chaperone TecG containing a conserved domain of DUF2169. TseG can directly interact with the chaperone TecG for delivery and with a downstream immunity protein TsiG for protection from its toxicity. TseG, highly conserved in the Pantoea genus, is involved in virulence in maize, potato, and onion. Additionally, P. ananatis uses TseG to target Escherichia coli, gaining a competitive advantage. This study provides the first report on the T6SS-1-secreted effector from P. ananatis, thereby enriching our understanding of the various types and functions of type VI effector proteins.


Asunto(s)
Pantoea , Sistemas de Secreción Tipo VI , Sistemas de Secreción Tipo VI/metabolismo , Pantoea/genética , Sistemas de Secreción Bacterianos/genética , Virulencia/genética , Antibacterianos , Chaperonas Moleculares , Proteínas Bacterianas/metabolismo
4.
Plant Biotechnol J ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38344883

RESUMEN

The plant rapid alkalinization factor (RALF) peptides function as key regulators in cell growth and immune responses through the receptor kinase FERONIA (FER). In this study, we report that the transcription factor FgPacC binds directly to the promoter of FgRALF gene, which encodes a functional homologue of the plant RALF peptides from the wheat head blight fungus Fusarium graminearum (FgRALF). More importantly, FgPacC promotes fungal infection via host immune suppression by activating the expression of FgRALF. The FgRALF peptide also exhibited typical activities of plant RALF functions, such as inducing plant alkalinization and inhibiting cell growth, including wheat (Triticum aestivum), tomato (Solanum lycopersicum) and Arabidopsis thaliana. We further identified the wheat receptor kinase FERONIA (TaFER), which is capable of restoring the defects of the A. thaliana FER mutant. In addition, we found that FgRALF peptide binds to the extracellular malectin-like domain (ECD) of TaFER (TaFERECD ) to suppress the PAMP-triggered immunity (PTI) and cell growth. Overexpression of TaFERECD in A. thaliana confers plant resistance to F. graminearum and protects from FgRALF-induced cell growth inhibition. Collectively, our results demonstrate that the fungal pathogen-secreted RALF mimic suppresses host immunity and inhibits cell growth via plant FER receptor. This establishes a novel pathway for the development of disease-resistant crops in the future without compromising their yield potential.

5.
Nat Commun ; 15(1): 231, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182582

RESUMEN

Bivalent histone modifications, including functionally opposite H3K4me3 and H3K27me3 marks simultaneously on the same nucleosome, control various cellular processes by fine-tuning the gene expression in eukaryotes. However, the role of bivalent histone modifications in fungal virulence remains elusive. By mapping the genome-wide landscape of H3K4me3 and H3K27me3 dynamic modifications in Fusarium graminearum (Fg) during invasion, we identify the infection-related bivalent chromatin-marked genes (BCGs). BCG1 gene, which encodes a secreted Fusarium-specific xylanase containing a G/Q-rich motif, displays the highest increase of bivalent modification during Fg infection. We report that the G/Q-rich motif of BCG1 is a stimulator of its xylanase activity and is essential for the full virulence of Fg. Intriguingly, this G/Q-rich motif is recognized by pattern-recognition receptors to trigger plant immunity. We discover that Fg employs H3K4me3 modification to induce BCG1 expression required for host cell wall degradation. After breaching the cell wall barrier, this active chromatin state is reset to bivalency by co-modifying with H3K27me3, which enables epigenetic silencing of BCG1 to escape from host immune surveillance. Collectively, our study highlights how fungal pathogens deploy bivalent epigenetic modification to achieve temporally-coordinated activation and suppression of a critical fungal gene, thereby facilitating successful infection and host immune evasion.


Asunto(s)
Código de Histonas , Histonas , Histonas/genética , Evasión Inmune , Procesamiento Proteico-Postraduccional , Cromatina
6.
Int J Biol Macromol ; 261(Pt 2): 129750, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286384

RESUMEN

Bacillus spp. has been widely used as a biocontrol agent to control plant diseases. However, little is known about mechanisms of the protein MAMP secreted by Bacillus spp. Herein, our study reported a glycoside hydrolase family 30 (GH30) protein, BpXynC, produced by the biocontrol bacteria Bacillus paralicheniformis NMSW12, that can induce cell death in several plant species. The results revealed that the recombinant protein triggers cell death in Nicotiana benthamiana in a BAK1-dependent manner and elicits an early defense response, including ROS burst, activation of MAPK cascades, and upregulation of plant immunity marker genes. BpXynC was also found to be a glucuronoxylanase that exhibits hydrolysis activity on xlyan. Two mutants of BpXynC which lost the glucuronoxylanase activity still retained the elicitor activity. The qRT-PCR results of defense-related genes showed that BpXynC induces plant immunity responses via an SA-mediated pathway. BpXynC and its mutants could induce resistance in N. benthamiana against infection by Sclerotinia sclerotiorum and tobacco mosaic virus (TMV). Furthermore, BpXynC-treated tomato fruits exhibited strong resistance to the infection of Phytophthora capsica. Overall, our study revealed that GH30 protein BpXynC can induce plant immunity response as MAMP, which can be further applied as a biopesticide to control plant diseases.


Asunto(s)
Bacillus , Glicósido Hidrolasas , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Proteínas , Bacillus/metabolismo , Inmunidad de la Planta , Enfermedades de las Plantas/microbiología
7.
Physiol Plant ; 175(6): e14087, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148207

RESUMEN

Rhizoctonia solani and Xanthomonas oryzae pv. oryzae (Xoo) are the two major diseases affecting the quality and quantity of rice production. In the current study, volatile organic compounds (VOCs) of Bacillus spp. were used as green biocontrol agents for plant diseases. In in vitro experiments, Bacillus spp. FZB42, NMTD17, and LLTC93-VOCs displayed strong antimicrobial volatile activity with inhibition rates of 76, 66, and 78% for R. solani and 78, 81, and 76% for Xoo, respectively, compared to control. The synthetic VOCs, namely Pentadecane (PDC), Benzaldehyde (BDH), 1,2-Benz isothiazol-3(2H)-one (1,2-BIT), and mixture (MIX) of VOCs showed high volatile activity with inhibition rates of 86, 86, 89, and 92% against R. solani and 81, 81, 82, and 86%, respectively, against Xoo as compared to control. In addition, the scanning and transmission electron microscopes (SEM and TEM) analyses were performed to examine the effect of Bacillus and synthetic VOC treatments on R. solani and Xoo morphology. The analysis revealed the deformed and irregularized morphology of R. solani mycelia and Xoo cells after VOC treatments. The microscopic analysis showed that the rapid inhibition was due to severe oxidative productions inside the R. solani mycelia and Xoo cells. By using molecular docking, it was determined that the synthetic VOCs entered the active binding site of trehalase and NADH dehydrogenase proteins, causing R. solani and Xoo cells to die prematurely and an accumulation of ROS. In the greenhouse experiment, FZB42, NMTD17, and LLTC93-VOCs significantly reduced the lesions of R. solani 8, 7, and 6 cm, and Xoo 7, 6, and 6 cm, respectively, then control. The synthetic VOCs demonstrated that the PDC, BDH, 1,2-BIT, and MIX-VOCs significantly reduced R. solani lesions on leaves 6, 6, 6, and 5 cm and Xoo 6, 5, 5, and 4 cm, respectively, as compared to control. Furthermore, plant defence-related genes and antioxidant enzymes were upregulated in rice plants. These findings provide novel mechanisms by which Bacillus antimicrobial VOCs control plant diseases.


Asunto(s)
Antiinfecciosos , Bacillus , Oryza , Compuestos Orgánicos Volátiles , Xanthomonas , Compuestos Orgánicos Volátiles/farmacología , Compuestos Orgánicos Volátiles/metabolismo , Simulación del Acoplamiento Molecular , Enfermedades de las Plantas/genética , Oryza/metabolismo , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología
8.
Physiol Plant ; 175(6): e14108, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148237

RESUMEN

Plants cannot avoid environmental challenges and are constantly threatened by diverse biotic and abiotic stresses. However, plants have developed a unique immune system to defend themselves against the invasion of various pathogens. Melatonin, N-acetyl-5-methoxytryptamine has positive physiological effects in plants that are involved in disease resistance. The processes underlying melatonin-induced pathogen resistance in plants are still unknown. The current study explores how melatonin regulates the plant-disease interaction in maize. The results showed that 400 µM melatonin strongly reduced the disease lesion on maize stalks by 1.5 cm and corn by 4.0 cm caused by Fusarium graminearum PH-1. Furthermore, after treatment with melatonin, the plant defense enzymes like SOD significantly increased, while POD and APX significantly decreased compared to the control. In addition, melatonin can also improve maize's innate immunity, which is mediated by melatonin treatments through the salicylic acid signaling pathway, and up-regulate the defense-associated expression of PR1, LOX1, OXR, serPIN, and WIPI genes in maize. Melatonin not only inhibits the disease in the maize stalks and corn, but also down-regulates the deoxynivalenol (DON) production-related expression of genes Tri1, Tri4, Tri5, and Tri6 in maize. Overall, this study sheds new light on the mechanisms by which melatonin regulates antioxidant enzymes and defense-related genes involved in plant immunity to effectively suppress plant diseases.


Asunto(s)
Fusarium , Melatonina , Melatonina/farmacología , Zea mays/metabolismo , Virulencia , Plantas , Enfermedades de las Plantas
9.
J Mol Model ; 29(11): 331, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37787828

RESUMEN

CONTEXT: In this paper, the electronic and optical properties of Cr-doped monolayer MoS2 under uniaxial tensile strain are investigated by first-principle calculations. It is shown that uniaxial tensile strain can significantly change the electronic and optical properties of Cr-doped monolayer MoS2, and the bandgap value of the intrinsic MoS2 system gradually decreases with the increase of tensile strain, while the bandgap value of the Cr-doped MoS2 system is relatively stable. However, when the stretching reaches a certain degree, both the intrinsic and doped systems become metallic. From the analysis of the density of states, it is found that new electronic states and energy levels appear in the intrinsic MoS2 system and all Cr-doped monolayer MoS2 systems with the increase of the tensile strain, but the changes in the density of states diagrams of the Cr-doped monolayer MoS2 system are relatively small, which is mainly attributed to the effect of the Cr-doped atoms. The analysis of optical properties displays that the stretched doped system differs from the intrinsic MoS2 system in terms of dielectric function, absorption and reflection, energy loss function, and refractive index. Our results suggest that uniaxial tensile strain can be used as an effective means to modulate the electronic structure and optical properties of Cr-doped monolayer MoS2. These findings provide a theoretical basis for understanding the optoelectronic properties of MoS2 and its doped systems as well as their applications in optoelectronic devices. METHODS: Based on the first principle of density functional theory framework and the CASTEP module in Materials Studio software (Perdew et al. in Phys Rev Lett 77(18):3865-3868, 1996). The structure of Cr atom-doped MoS2 systems and MoS2 systems were optimized using the generalized gradient approximation plane-wave pseudopotential method (GGA) and Perdew-Burke-Ernzerhof (PBE) generalized functions under 3%, 6%, and 9% tensile deformation, and the corresponding formation energy, bond length, electronic structure, and optical properties of the models were analyzed. The Grimme (J Comput Chem 27(15):1787-1799, 2006) vdW correction with 400 eV cutoff was used in Perdew-Burke-Ernzerhof (PBE) functional to optimize the geometry until the forces and energy converged to 0.02 eV/Å and 1.0e-5eV/atom, respectively. For each model structure optimization, the K-point grid was assumed to be 4×4×1, using the Monkhorst-Pack special K-point sampling method. After the MoS2 supercell convergence test, the plane-wave truncation energy was chosen to be 400 eV. Following geometric optimization, the iterative accuracy converged to no less than 1.0×10-5 eV/atom for total atomic energy and less than 0.02 eV/Å for all atomic forces. We created a vacuum layer of 18 Å along the Z-axis to prevent the impact of periodic boundary conditions and weak van der Waals forces between layers on the monolayer MoS2. In this paper, a total of 27 atoms were used for the 3×3×1 supercell MoS2 system, which consists of 18 S atoms and 9 Mo atoms.

10.
Arch Microbiol ; 205(11): 358, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37878074

RESUMEN

Volatile organic compounds (VOCs), produced by a variety of microbial species and used as biological agents, have been demonstrated to play a significant role in controlling phytopathogens. In continuation of our previous studies, we aim to elucidate the underlying mechanisms and pathways involved in interactions between pathogens and microbial VOCs. In the current study, we tested how VOCs produced by Bacillus velezensis FZB42 affect the growth of Ralstonia solanacearum TBBS1 in vitro.Query The result showed that the colony growth of R. solanacearum was reduced with an inhibition rate of 0.83 ± 0.043 as compared to the control 1.7 ± 0.076, respectively. The number of viable cells of R. solanacearum was significantly decreased to 7.68 CFU/mL as compared to the control (9.02 CFU/mL). In addition, transcriptomic analysis of R. solanacearum in response to VOCs produced by FZB42 was performed to better understand the effect of VOCs on R. solanacearum. The transcriptional response of R. solanacearum to FZB42-VOCs was determined using an Illumina RNA-seq approach. The results revealed significant changes in the expression of 2094 R. solanacearum genes, including 593 upregulated and 1501 downregulated genes. To validate the RNA-seq results, the expression of 10 genes was quantified using RT-qPCR. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to functionally annotate differentially expressed genes. Significant changes were observed in genes directly or indirectly related to virulence, including those related to bacterial invasion, motility, chemotaxis, and secretion systems. Overall, RNA-seq profiling provides new insights into the possible fundamental molecular mechanisms that are responsible for the reduction in growth and virulence of R. solanacearum upon application of FZB42-VOC.


Asunto(s)
Ralstonia solanacearum , Compuestos Orgánicos Volátiles , Ralstonia solanacearum/genética , Transcriptoma , Perfilación de la Expresión Génica , Antibacterianos , Compuestos Orgánicos Volátiles/farmacología
11.
Mol Plant Pathol ; 24(12): 1510-1521, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37731193

RESUMEN

The gram-positive bacterium Bacillus velezensis strain DMW1 produces a high level of antimicrobial metabolites that can suppress the growth of phytopathogens. We investigated the mechanism used by degQ and the degS/degU two-component system to regulate the biocontrol characteristics of DMW1. When degQ and degU were deleted, the biofilm formation, cell motility, colonization activities, and antifungal abilities of ΔdegQ and ΔdegU were significantly reduced compared to wild-type DMW1. The expression levels of biofilm-related genes (epsA, epsB, epsC, and tasA) and swarming-related genes (swrA and swrB) were all down-regulated. We also evaluated the impact on secondary metabolites of these two genes. The degQ and degU genes reduced surfactin and macrolactin production and up-regulated the production of fengycin, iturin, bacillaene, and difficidin metabolites. The reverse transcription-quantitative PCR results were consistent with these observations. Electrophoretic mobility shift assay and microscale thermophoresis revealed that DegU can bind to the promoter regions of these six antimicrobial metabolite genes and regulate their synthesis. In conclusion, we provided systematic evidence to demonstrate that the degQ and degU genes are important regulators of multicellular behaviour and antimicrobial metabolic processes in B. velezensis DMW1 and suggested novel amenable strains to be used for the industrial production of antimicrobial metabolites.


Asunto(s)
Antiinfecciosos , Bacillus , Bacillus/genética , Bacillus/metabolismo , Antiinfecciosos/metabolismo , Antifúngicos/farmacología , Antifúngicos/metabolismo , Biopelículas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacillus subtilis
12.
Biology (Basel) ; 12(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37508371

RESUMEN

The interaction between plant and bacterial VOCs has been extensively studied, but the role of VOCs in growth promotion still needs to be explored. In the current study, we aim to explore the growth promotion mechanisms of cold-tolerant Bacillus strains GBAC46 and RJGP41 and the well-known PGPR strain FZB42 and their VOCs on tomato plants. The result showed that the activity of phytohormone (IAA) production was greatly improved in GBAC46 and RJGP41 as compared to FZB42 strains. The in vitro and in-pot experiment results showed that the Bacillus VOCs improved plant growth traits in terms of physiological parameters as compared to the CK. The VOCs identified through gas chromatography-mass spectrometry (GC-MS) analysis, namely 2 pentanone, 3-ethyl (2P3E) from GBAC46, 1,3-cyclobutanediol,2,2,4,4-tetramethyl (CBDO) from RJGP41, and benzaldehyde (BDH) from FZB42, were used for plant growth promotion. The results of the partition plate (I-plate) and in-pot experiments showed that all the selected VOCs (2P3E, CBDO, and BDH) promoted plant growth parameters as compared to CK. Furthermore, the root morphological factors also revealed that the selected VOCs improved the root physiological traits in tomato plants. The plant defense enzymes (POD, APX, SOD, and CAT) and total protein contents were studied, and the results showed that the antioxidant enzymes and protein contents significantly increased as compared to CK. Similarly, plant growth promotion expression genes (IAA4, ARF10A, GA2OX2, CKX2, and EXP1) were significantly upregulated and the ERF gene was downregulated as compared to CK. The overall findings suggest that both Bacillus isolates and their pure VOCs positively improved plant growth promotion activities by triggering the antioxidant enzyme activity, protein contents, and relative gene expressions in tomato plants.

13.
J Med Chem ; 66(13): 9040-9056, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37314697

RESUMEN

Agrochemical science prioritizes the discovery and effective synthesis of innovative and promising lead compounds. Herein, we developed an efficient column chromatography-free synthesis for ß-carboline 1-hydrazides via a mild CuBr2-catalyzed oxidation and investigated the antifungal and antibacterial activities and mechanisms for these compounds. In our study, compounds 4de (EC50 = 0.23 µg·mL-1) and 4dq (EC50 = 0.11 µg·mL-1) displayed the best efficacy, demonstrating enhancements in inhibitory activity of more than 20-fold against Ggt compared to silthiopham (EC50 = 2.39 µg·mL-1). Additionally, compound 4de (EC50 = 0.21 µg·mL-1) demonstrated outstanding in vitro antifungal activities as well as in vivo curative activities against Fg. According to preliminary mechanistic studies, ß-carboline 1-hydrazides led to the accumulation of reactive oxygen species, destruction of cell membranes, and dysregulation of histone acetylation. Furthermore, several substances exhibited antibacterial activity against Psg and Cms by preventing the development of bacterial biofilms.


Asunto(s)
Antibacterianos , Antifúngicos , Antifúngicos/farmacología , Relación Estructura-Actividad , Antibacterianos/farmacología , Carbolinas/química
14.
Plant Dis ; 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081631

RESUMEN

Onion (Allium cepa L.) is a globally important crop worldwide including Saudi Arabia. In November 2020, 2-month-old onion plants (cv. Redwing) in commercial fields within the Sajir area of Riyadh region (∼ 1.4 ha), showed symptoms of yellowing, wilting, stunting, bulb discoloration, rot in the basal parts of bulb and decrease in roots. In the advanced stages, the affected plants collapsed and died. The incidence of symptomatic plants ranged from 30 to 65% in the surveyed fields. To isolate the pathogen, symptomatic onion plants (n =20) were sampled. Diseased tissues from roots and bulbs were cut into small pieces (4 × 4 mm), sanitized with 1% sodium hypochlorite solution for 2 min, submerged in 70% alcohol for 20 s, then rinsed with sterile water, before plating on potato dextrose agar (PDA) medium. The plates were incubated at 25°C for 6 days. Subcultures of the mycelia grown out of the diseased tissues produced purplish pink fungal colonies on PDA. On carnation leaf agar, cultures were characteristic of Fusarium oxysporum as described by Leslie and Summerell (2006), with the presence of unicellular microconidia (3.8 to 7.8 × 1.7 to 2.5 µm, n= 50) without septa in false heads or short monophialides and slightly curved macroconidia (16.3 to 28 × 4.2 to 6.1 µm, n= 50) with two to four septa. Older mycelia developed many chlamydospores that were single or in short chains. To further confirm the pathogen identification, DNA was extracted from single-spore cultures of three representative isolates using the DNeasy Plant Mini kit (QIAGEN, Hilden, Germany). Three different fungal nuclear regions of internal transcribed spacer (ITS), elongation factor 1-α, (TEF1-α) and the second largest subunit of DNA-directed RNA polymerase II (RPB2) DNA were amplified by PCR and sequenced with the following primers: ITS4 and ITS5 (White et al. 1990); EF-1 and EF-2 (O'Donnell et al. 2008); and fRPB2-5F and fRPB2-7cR (Liu et al. 1999), respectively. Phylogenetic analysis based on the alignment of the ITS, TEF1-α, and RPB2 sequences using MEGA7 placed these isolates in the F. oxysporum clade. The ITS, TEF1-α, and RPB2 sequences of an isolate FOC-OR9 were submitted to GenBank (OL721757, OL764494, and OL764495 respectively). To confirm the forma specialis cepae, a fragment of the F. oxysporum f. sp. cepae gene Secreted In Xylem 3 (SIX3) was amplified by PCR (Kalman et al. 2020). The SIX3 amplicon (∼ 277-bp) was sent for sequencing, and the sequence was submitted to GenBank (OL828265). BLASTn analysis of the sequences showed 100% identity with F. oxysporum f. sp. cepae (KP746408). To fulfill Koch's postulates, pathogenicity tests were performed with healthy onion bulbs cv. "Redwing" of 100-150 g each. Prior to inoculation of onion bulbs, the dry bulb scales, one of the fleshy inner scales, as well as the roots were removed. Bulbs were then surface sterilized (as described above) and injected with 20 µl of a conidial suspension (106 spores/ ml) into the basal plate of each bulb and approximately 1 cm deep into the tissue. Six bulbs were inoculated for each isolate, placed in a mesh bag, and incubated at 28 °C in the dark. Six bulbs injected with sterile water and six non-inoculated bulbs served as controls. At the 4th week post inoculation, necrotic rot symptoms and brown discoloration were observed on the basal plates of these inoculated bulbs (similar symptoms to those observed in the field), while control treatments showed no symptoms. The pathogen was re-isolated from the basal plates onto PDA and identified morphologically and molecularly as F. oxysporum f. sp. cepae, thus fulfilling Koch's postulates. The test was repeated twice. This pathogen was previously reported causing onion basal rot in United Kingdom (Taylor, et al., 2013). To our knowledge, this is the first report of basal rot in onion caused by F. oxysporum f. sp. cepae in Saudi Arabia. It is recommended that preventive management should be considered as this disease may cause significant economic losses for onion growers in Saudi Arabia. Also, Fusarium mycotoxin contamination of onion bulb could pose a public health risk.

15.
Physiol Plant ; 175(1): e13868, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36724171

RESUMEN

The plant parasitic nematode Aphelenchoides besseyi is a major pest that poses serious threats to different vegetables and crop plants. In the present study, volatiles isolated from Bacillus spp. were utilized as green biocontrol agents to overcome nematodes. In in vitro experiment, Bacillus spp. GBSC56, SYST2, and FZB42 showed the strongest nematicidal activity with killing rates of 80.78%, 75.69%, and 60.45%, respectively, as compared with control. The selected synthetic volatile organic compounds (VOCs), namely albuterol, benzaldehyde (BDH), 1,2-benzisothiazol-3(2H)-one (1,2-HIT), dimethyl disulfide (DMDS), 2-undecanone (2-UD), and 1,3-propanediole (1,3-PD), exhibited strong nematicidal activity, with A. besseyi killing rate of 85.58%, 82.65%, 81.75%, 80.36%, 84.45%, and 82.36%, respectively, at 400 µg/mL. Microscopic analysis proved that the rapid mortality was due to the production of reactive oxygen species (ROS). Molecular docking attributed this ROS production to the nematicidal effect of synthetic VOCs on NADH DEHYDROGENASE SUBUNIT 2, which is known to play a critical role in the suppression of ROS in nematode models. In a greenhouse experiment, the Bacillus strains GBSC56, SYST2, and FZB42 and their synthetic VOCs significantly improved the physiological parameters in terms of growth promotion traits. In addition, selected genes related to growth promotion and defense genes showed a significant upregulation of their expression in rice seedlings treated with those synthetic VOCs. Overall, these findings revealed that the selected Bacillus strains and their synthetic VOCs possess high potential against A. besseyi. Moreover, this study also sheds new light on the mechanisms by which specific Bacillus nematicidal VOCs influence important genes involved in rice plant growth promotion and could effectively be used to suppress plant parasitic nematodes.


Asunto(s)
Bacillus , Nematodos , Oryza , Animales , Especies Reactivas de Oxígeno/metabolismo , Simulación del Acoplamiento Molecular , Plantas , Estrés Oxidativo
16.
Microbiol Spectr ; : e0003823, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36809029

RESUMEN

The genus Bacillus is one of the most important genera for the biological control of plant diseases that are caused by various phytopathogens. The endophytic Bacillus strain DMW1 was isolated from the inner tissues of potato tubers and exhibited strong biocontrol activity. Based on its whole-genome sequence, DMW1 belongs to the Bacillus velezensis species, and it is similar to the model strain B. velezensis FZB42. 12 secondary metabolite biosynthetic gene clusters (BGCs), including two unknown function BGCs, were detected in the DMW1 genome. The strain was shown to be genetically amenable, and seven secondary metabolites acting antagonistically against plant pathogens were identified by a combined genetic and chemical approach. Strain DMW1 did significantly improve the growth of tomato and soybean seedlings, and it was able to control the Phytophthora sojae and Ralstonia solanacearum that were present in the plant seedlings. Due to these properties, the endophytic strain DMW1 appears to be a promising candidate for comparative investigations performed together with the Gram-positive model rhizobacterium FZB42, which is only able to colonize the rhizoplane. IMPORTANCE Phytopathogens are responsible for the wide spread of plant diseases as well as for great losses of crop yields. At present, the strategies used to control plant disease, including the development of resistant cultivars and chemical control, may become ineffective due to the adaptive evolution of pathogens. Therefore, the use of beneficial microorganisms to deal with plant diseases attracts great attention. In the present study, a new strain DMW1, belonging to the species B. velezensis, was discovered with outstanding biocontrol properties. It showed plant growth promotion and disease control abilities that are comparable with those of B. velezensis FZB42 under greenhouse conditions. According to a genomic analysis and a bioactive metabolites analysis, genes that are responsible for promoting plant growth were detected, and metabolites with different antagonistic activities were identified. Our data provide a basis for DMW1 to be further developed and applied as a biopesticide, which is similar to the closely related model strain FZB42.

17.
Pathogens ; 11(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36365003

RESUMEN

Rice (Oryza sativa L.) is a major cereal and staple food crop worldwide, and its growth and production are affected by several fungal and bacterial phytopathogens. Bacterial blight (BB) is one of the world's most devastating rice diseases, caused by Xanthomonas oryzae pv. oryzae (Xoo). In the current study, Bacillus atrophaeus FA12 and B. cabrialesii FA26 were isolated from the rice rhizosphere and characterized as having broad-range antifungal and antibacterial activities against various phytopathogens, including Xoo. In addition, the selected strains were further evaluated for their potent rice growth promotion and suppression efficacy against BB under greenhouse conditions. The result shows that FA12 and FA26, applied as seed inoculants, significantly enhanced the vigor index of rice seedlings by 78.89% and 108.70%, respectively. Suppression efficacy against BB disease by FA12 and FA26 reached up to 59.74% and 54.70%, respectively, in pot experiments. Furthermore, MALDI-TOF MS analysis of selected strains revealed the masses ranged from m/z 1040 to 1540, representing that iturins and fengycin are the major antimicrobial compounds in the crude extracts, which might have beneficial roles in rice defence responses against BB. In conclusion, FA12 and FA26 possess broad-range antagonistic activity and have the capability to promote plant growth traits. More importantly, applying these strains has a high potential for implementing eco-friendly, cost-effective, and sustainable management practices for BB disease.

18.
Plants (Basel) ; 11(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36297795

RESUMEN

Soil salinity is a major constraint adversely affecting agricultural crops including wheat worldwide. The use of plant growth promoting rhizobacteria (PGPR) to alleviate salt stress in crops has attracted the focus of many researchers due to its safe and eco-friendly nature. The current study aimed to study the genetic potential of high halophilic Bacillus strains, isolated from the rhizosphere in the extreme environment of the Qinghai-Tibetan plateau region of China, to reduce salt stress in wheat plants. The genetic analysis of high halophilic strains, NMCN1, LLCG23, and moderate halophilic stain, FZB42, revealed their key genetic features that play an important role in salt stress, osmotic regulation, signal transduction and membrane transport. Consequently, the expression of predicted salt stress-related genes were upregulated in the halophilic strains upon NaCl treatments 10, 16 and 18%, as compared with control. The halophilic strains also induced a stress response in wheat plants through the regulation of lipid peroxidation, abscisic acid and proline in a very efficient manner. Furthermore, NMCN1 and LLCG23 significantly enhanced wheat growth parameters in terms of physiological traits, i.e., fresh weight 31.2% and 29.7%, dry weight 28.6% and 27.3%, shoot length 34.2% and 31.3% and root length 32.4% and 30.2%, respectively, as compared to control plants under high NaCl concentration (200 mmol). The Bacillus strains NMCN1 and LLCG23 efficiently modulated phytohormones, leading to the substantial enhancement of plant tolerance towards salt stress. Therefore, we concluded that NMCN1 and LLCG23 contain a plethora of genetic features enabling them to combat with salt stress, which could be widely used in different bio-formulations to obtain high crop production in saline conditions.

19.
Aging Med (Milton) ; 5(3): 191-203, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36247340

RESUMEN

Malnutrition is a state of altered body composition and body cell mass due to inadequate intake or utilization of energy or nutrients, leading to physical and mental dysfunction and impaired clinical outcomes. As one of the most common geriatric syndromes, malnutrition in the elderly is a significant risk factor for poor clinical outcomes, causing a massive burden on medical resources and society. The risk factors for malnutrition in the elderly are diverse and include demographics, chronic diseases, and psychosocial factors. Presently, recommendations for the prevention and intervention of malnutrition in the elderly are not clear or consistent in China. This consensus is based on the latest global evidence and multiregional clinical experience in China, which aims to standardize the prevention and intervention of malnutrition in the elderly in China and improve the efficacy of clinical practice and the prognosis of elderly patients.

20.
Pest Manag Sci ; 78(11): 5002-5013, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36053816

RESUMEN

BACKGROUND: Bacterial wilt (BW) caused by Ralstonia solanacearum (RS) is considered as one of the most destructive plant diseases. An avirulent strain of RS, FJAT1458, is a potential biocontrol agent of BW. In this study, the mechanism of FJAT1458 against BW was evaluated. RESULTS: FJAT1458 was tagged with the red fluorescent protein gene, and the resulting strain was named as FJAT1458-RFP. When FJAT1458-RFP and FJAT91-GFP (a virulent strain of RS labelled with the green fluorescent protein gene), were co-inoculated in potted tomato plants, the colonization of FJAT91-GFP reached an almost undetectable level at 7 days post-inoculation (dpi) in the roots and at 9 dpi in rhizosphere soil. When they were co-inoculated in a hydroponic tomato growing system, numbers of the two strains were similar at 3 dpi in the root tissues; however, FJAT91-GFP was not detected at 9 dpi while FJAT1458-RFP maintained 1.77 × 105 CFU g-1 . The inoculation of FJAT1458-RFP alone or combination with FJAT91-GFP significantly increased tomato root activity. Moreover, expression levels of the defense-related genes PR-1a, GLUA, and CHI3 in tomato roots were significantly up-regulated by FJAT1458-RFP and co-inoculation of FJAT1458-RFP and FJAT91-GFP at 5 dpi, compared to the control (water, CK) treatment. Noteworthy, expression levels of GLUA in the treatments of FJAT1458-RFP and FJAT1458-RFP + FJAT91-GFP were 12.22- and 12.05-fold higher than that in the CK at 5 dpi, respectively. CONCLUSIONS: The results suggested that the avirulent strain FJAT1458-RFP could suppress colonization of the virulent strain in tomato roots, and induce tomato plant resistance against BW. © 2022 Society of Chemical Industry.


Asunto(s)
Ralstonia solanacearum , Solanum lycopersicum , Proteínas Fluorescentes Verdes , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/genética , Suelo , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...